Search results for "Cycling efficiency"

showing 2 items of 2 documents

Template electrodeposition and characterization of nanostructured Pb as a negative electrode for lead-acid battery

2019

Abstract Despite Lead Acid Battery (LAB) is the oldest electrochemical energy storage system, diffusion in the emerging sectors of technological interest is inhibited by its drawbacks. The principal ones are low energy density and negative plate sulphating on high rate discharging. In this work, it is shown the possibility of overcoming such drawbacks by using nanostructured lead as a negative electrode. Lead nanowires (NWs) were fabricated by electrochemical deposition in template, which is an easy, cheap, and easily scalable process. Their morphology and crystal structure have been characterized by electron microscopy and X-ray diffraction, respectively. An electrochemical cell simulating…

Auxiliary electrodeMaterials scienceNanostructureHigh C-Rate cyclingCycling efficiencyRenewable Energy Sustainability and the EnvironmentNanowireLead-acid batteryEnergy Engineering and Power TechnologyNanotechnologyTemplate electrodepositionElectrochemistryElectrochemical cellSettore ING-IND/23 - Chimica Fisica ApplicataLead nanowireElectrodePhysical and Theoretical ChemistryElectrical and Electronic EngineeringLead–acid batteryPorositySeparator (electricity)
researchProduct

High-Performance Lead-Acid Batteries Enabled by Pb and PbO2 Nanostructured Electrodes: Effect of Operating Temperature

2021

Lead-acid batteries are now widely used for energy storage, as result of an established and reliable technology. In the last decade, several studies have been carried out to improve the performance of this type of batteries, with the main objective to replace the conventional plates with innovative electrodes with improved stability, increased capacity and a larger active surface. Such studies ultimately aim to improve the kinetics of electrochemical conversion reactions at the electrode-solution interface and to guarantee a good electrical continuity during the repeated charge/discharge cycles. To achieve these objectives, our contribution focuses on the employment of nanostructured electr…

temperature testTechnologyMaterials scienceQH301-705.5template electrodepositionQC1-999Nanotechnology02 engineering and technology010402 general chemistryElectrosynthesis01 natural sciencesEnergy storageHigh C-rate cycling Lead nanowires Lead-acid battery Nanostructures cycling efficiency Temperature test Template electrodepositionOperating temperatureSettore ING-IND/17 - Impianti Industriali MeccaniciGeneral Materials ScienceBiology (General)Lead–acid batteryInstrumentationQD1-999Separator (electricity)Fluid Flow and Transfer Processeshigh C-rate cyclingNanoporouslead-acid batteryProcess Chemistry and TechnologyTPhysicsGeneral Engineeringlead nanowiresActive surface021001 nanoscience & nanotechnologyEngineering (General). Civil engineering (General)0104 chemical sciencesComputer Science ApplicationsChemistrySettore ING-IND/23 - Chimica Fisica ApplicataElectrodenanostructures cycling efficiencyTA1-20400210 nano-technologyApplied Sciences
researchProduct